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Abstract: The steady MHD free convection and mass transfer flow of a viscous, 

incompressible, electrically conducting and partially ionized fluid past an 

impulsively started semi- infinite vertical porous plate with thermal diffusion, 

Hall and ion-slip currents and large suction in a rotating system under the 

influence of a transversely applied magnetic field is studied. The whole system 

is assumed to be in a state of rigid body rotation. Similarity variables are 

introduced to transfer the governing equations and the short circuit situation is 

considered to simplify the equations. Under the assumption of large suction and 

using perturbation technique the simplified equations have been obtained and 

are then solved in straightforward manner. The results are shown graphically as 

well as tabular for different values of the non-dimensional parameters. 
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Introduction 

Many researchers have studied magnetohydrodynamics free convection flow of an 

electrically conducting fluid along a heated semi-infinite vertical flat plate in the presence 

of a strong magnetic field. In most of the studies, Hall and ion-slip terms were ignored in 

applying Ohm’s law, as it has no marked effect for small and moderate values of the 

magnetic field. However, the current trend for application of magnetohydrodynamics is 

towards a strong magnetic field, so that the effect of electromagnetic force is noticeable 

Cramer and Pai [4]. Under these conditions Hall and ion-slip currents are important and 

they have a marked effect on the magnitude and direction of the current density and 

consequently on the magnetic force term. The problem of MHD free convection flow 

with Hall and ion-slip currents has many important engineering applications, e.g. in 

power generators, Hall accelerators and flows in channels and ducts. Bo-Eldahab and El 

Aziz [1] studied the effect of Hall and ion-slip currents with internal heat. 

Ram and Takhar [6] studied the MHD free convection flow past an infinite vertical plate 

with Hall and ion-slip currents when the fluid and the plate are in a state of rigid rotation. 

Hossain [5] has considered the effects of Joule heating for MHD forced and free 

convection flow.  Alam and Sattar [2] studied the steady two-dimensional MHD free 

convective and mass transfer flow with thermal diffusion and large suction past an 

infinite vertical porous plate in a rotating system. An important type of rotating boundary  
________________________________   

* 
Corresponding Author. 

1 
Department of Mathematics, Khulna University of Engineering & Technology, Khulna-9203, 

Bangladesh 
2
 Mathematics Discipline, Khulna University, Khulna-9208, Bangladesh 



60 Abul Kalam Azad, Mohammad Arif Hossain, Fouzia Rahman, Mohammad Wahiduzzaman and Md. Mahmud Alam 

layer flow is the flow over rotating blades, occurring in turbines, helicopters and 

propellers. In view of the above investigations, in the present work, we have studied the 

MHD free convection and mass transfer flow with thermal diffusion, Hall current and 

ion-slip current and large suction of a viscous incompressible, electrically conducting and 

partially ionized fluid past an impulsively started infinite vertical plate. The whole system 

is assumed to be in a state of rigid body rotation. The governing non-linear complete 

partial differential equations are transformed to a set of non-linear coupled ordinary 

differential equations by introducing similarity variables. 

Considering the case of short circuit condition the equations are simplified. Under the 

condition of large suction, following Singh and Dikshit [7] and Bestman [3], the 

dependent variables have been expanded in terms of small perturbation quantity and 

considering the order of this quantity the set of ordinary differential equations are 

obtained. The boundary conditions have also been transformed accordingly and the set of 

ordinary differential equations, whose coefficients are non-dimensional parameters, have 

been solved in straightforward manner.  The effects of various parameters have been 

calculated and are shown in graphically as well as tabular form.  

Governing Equations 

The steady MHD free convection flow of a viscous, incompressible and electrically 

conducting partially ionized fluid past an impulsively started infinite vertical porous plate 

with thermal diffusion, Hall current, ion slip current and large suction in a rotating system 

under the influence of a transversely applied magnetic field is considered in the present 

flow model. Let the x and y-axis be along and normal to the plate respectively. Let u and 

v are the velocity components along x and y directions respectively. Initially the plate and 

the fluid are at rest and the temperature of the fluid and the plate are also same. The plate 

temperature and the fluid concentration are instantly raised from T
 and C 

 to wT  and 

 wC x  respectively, where T and C are the temperature and concentration of the 

uniform flow constant.  The induced magnetic field is assumed to be negligible so 

that 0(0, ,0)B B  where 0B  is the constant transversely applied magnetic field which is 

acting along the direction of y . 

If  x y zJ= , ,J J J  is the current density, the equation of conservation of electric charge 

.J= 0 gives yJ  constant. Since the plate is electrically non-conducting, this constant is 

zero and hence, 0yJ   everywhere with in the flow. We further consider that the fluid 

and the plate are in a state of solid body rotation with a constant angular velocity Ω about 

y-axis, which is taken to be perpendicular to the plate. The flow configuration in a 

rotating system is shown in figure 1. Within the framework of such assumptions and 

under Boussinesq’s approximation, the equations relevant to the problem can be put in 

the following form: 

The continuity equation 0 (1)
u v

x y

 
 

 
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Fig. 1: Physical configuration and coordinate system 

The momentum equations  
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The energy equation 
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The concentration equation  
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where  Ω  is the angular velocity,  0g  is the acceleration due to gravity,    is the co-efficient of 

volume expansion,    is the co efficient of expansion with concentration,   is the density, T  is the 

temperature of the flow field, T
 is the temperature of the fluid at infinity, C  is the species 

concentration, C
 is the species concentration at infinity, mD is the molecular diffusivity, TD  is the 

thermal diffusivity,   

   0 0z z xJ E B u E B w        and    0 0x x zJ E B w E B u        in which  

    2 21 / 1i e i e e         ,   2 2/ 1e i e e       , i  is the ion-slip parameter and 

e is the Hall parameter. 

The boundary conditions for the problem are:    

   0 0,   ,   0,   ,    at   0

0,                        0,   ,          at  

w wu U v v x w T T C C x y

u w T T C C y 

      


    
                                     (6) 

where 0U is the uniform velocity and  0v x is the suction velocity at the plate and  wC x  

is the variable concentration at the plate. 

Mathematical Formulations 
 

To attain similarity solutions we have introduced the following similarity variables: 
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Now for reasons of similarity the plate concentration Cw (x) is taken to be  

   0wC x C C C x                                                                       (8) 

where 


0xU
x   and 

0
C  is considered to be the mean concentration. 

Now in terms of  (8) the equation (1) can be integrated to 

)'(
2

0 ff
x

U
v  

                                                    (9) 

Introducing equation (7) into the equations (2)-(5), we obtain the similarity equations 

 

1 2 24 0r mf ff Rg M f M g G G N N                                                     (10) 

2 1 1 24 0g g f Rf f M M g N N                                                   (11) 

0rP f                                                                                                         (12) 

02 0c c cS f S S S                                                                                       (13) 

where 
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We now consider further the case of short circuit problem in which the applied electric 

field 0E  . Now for this we have 1 2 1 20, 0, 0,  and  0.N N N N      Then the above 

equations (10) and (11) reduces to the following form and the other two equations remain 

same. 
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1 24 0r mf ff Rg M f M g G G                                                                (14) 

2 14 0g g f Rf f M M g                                                              (15)           

The corresponding boundary conditions are 

,   1,  0,  1,  1 at 0

0,  0,  0,  0 as 0
wf f f g

f g

  

  

      
      

                                                          (16) 

where 

0
0

2
)(

U

x
xvfw


  is the transpiration parameter and primes denote derivative with 

respect to  . Here 0wf   indicates the suction and 0wf  the injection. The solution of 

the equations (12)-(13) & (14)-15) subject to the boundary conditions (16) are now 

sought and are presented in the following section. 

Solutions  

To solve the equations the following transformations are made 
 

               2 2 2, , , ,w w w w wf f f F g f G f H f P                             (17) 

 

Substituting (17) in equations (12) –(13) & (14) –(15) we have  
 

  1 24 0r mF FF M F R M G G H G P                                                   (18) 

  2 14 0G G F F M R M G                                                   (19) 

0rH P FH                                                                                       (20) 

 02 0c c cP S F P S FP S S H                                                                     (21) 

where  
2

1

wf
                                                                    

 

The transformed boundary conditions are 

1,   ,  0,  ,    at  0

0,  0,   0,    0     as     

F F G H P

F G H P

   



      
     

                                                      (22)  

 

Now for large suction 1wf  , so that   is very small, therefore, following Singh and 

Dikshit [7] and Bestman [3], ,  ,   and F G H P  can be expanded in terms of small 

perturbation quantity   as  
 

       2 3
1 2 31F F F F                                                               (23) 

       2 3
1 2 3G G G G                                                                 (24) 

       2 3
1 2 3H H H H                                                                (25) 

       2 3
1 2 3P P P P                                                                    (26) 
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Then substituting        ,  ,  ,  and  ,F G H P     from (23)–(26) in the equations (18)–

(21), we have the following set of ordinary differential equations and the boundary 

conditions for          ,  ,   and   1,2,3,....i i i iF G H P i     ;  
 

For the first order; 0 ( ): 

1 1 0F F                                                                                                           (27)  

1 1 0G G                                                                                                     (28)  

1 1 0rH P H                                                                                                     (29)  

1 1 0 1 0c cP S P S S H                  (30)  

1 1 1 1 1

1 1 1 1

0,  1,  0,  1,  1,  at  0

0,   0,   0,   0,         at  

F F G H P

F G H P





      


    
                                                   (31) 

 

For the second order;  2O  : 

 2 2 1 1 1 1 2 1 1 14 0r mF F F F M F R M G G H G P                                                (32) 

 2 2 1 1 2 1 14 0G G FG M R F M G                                                                    (33) 

2 2 1 1 0r rH P H P F H                                                                                             (34) 

2 1 1 2 1 1 0 22 0c c c cP S PF S P S F P S S H                                                                        (35) 

2 2 2 2 2

2 2 2 2

0,   1,  0,  0,   0,  at  0

0,   0,   0,   0,            at 

F F G H P

F G H P





      


     
                                                (36)       

 

For the third order;  3O  :  

 3 3 1 2 2 1 1 2 2 2 2 24 0r mF F F F F F M F R M G G H G P                                         (37)  

 3 3 1 2 2 1 2 2 1 24 0G G F G F G M R F M G                                                           (38) 

3 1 2 3 2 1 0r r rH P F H P H P F H                                                        (39) 

3 2 1 1 2 3 1 2 2 1 0 32 2 2 0c c c c c cP S P F S PF S P S F P S F P S S H                                         (40) 

3 3 3 3 3

3 3 3 3

0,   0,  0,  0,   0,  at  0

0,   0,   0,   0,            at 

F F G H P

F G H P





      


     
                                                (41) 

etc. 
 

The solutions of the above equations up to order 3  under the prescribed boundary 

conditions are obtained in a straightforward manner and are   
 

1 1F e                                                                                                             (42) 

1 0G                                                                                                     (43)       

1
rP

H e


                                                                                                             (44) 

1 1 2
cr SP

P Ae A e
 

                            (45) 
2

2 3 4 5 6 70.25 cr SP
F e A e A e A e A e A

                                                      (46) 
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 2 2 4G M R e                  (47) 

 1

2 8 8
rr r

PP P

rH A e Pe A e
 
  

               (48) 

   1 1

2 9 10 11 12 13 14
r c c cr r

P S S SP P
P A e A e A e A e A e A e

     
      

                   
    

  (49) 

   

3 2 2 2 2

3 3 3 15 16 17 18

1 1

19 20 21 22 23 24 25

0.07 0.5 0.5 0.25

       

c r

c r c r

S P

S P S P

F e A e A e A e A e A e A e

A e A e A e A A e A e A e

     

    

   



     

      

       

      
 (50)  

  2 2

3 2 26 27 28 29 300.5 4 0.5 cr SP
G M R e A e A e A e A e A e

                       (51) 

       2 1 12 2

3 31 32 36 34 35 371 0.5r r rr r r r
P P PP P P P

H A e A e A e A e A e A e e
       
        

         (52) 

       

     

2 2 122

3 38 39 40 41 42 43

1 1 12 2

44 45 46 47 48 49       

r c r c ccr

r r cc r r

P S P S SSP

P P SS P P

P A e A e A e A e A e A e

A e A e A e A e A e A e

   

    



    

       

       

     

     

               (53) 

 

where the constants  where 1,2,3,....iA i   are not shown for brevity. The velocity, the 

temperature and the concentration fields are thus obtained from equations (23) - (26) 

  2
1 2

0

u
f F F F

U
                                              (54) 

  2
1 2 3

0

w
g G G G

U
                     (55) 

  2

1 2 3H H H                                      (56) 

  2

1 2 3P P P                                        (57) 

Thus with the help of equations (42)–(53) the velocity, temperature and concentration 

distributions can be calculated from equations (54) – (57). The velocity distributions are 

shown in Figs 2- 15. 

Skin-friction coefficient, Nusselt number & Sherwood number  

The quantities of chief physical interest are the skin friction coefficients, Nusselt number 

and  Sherwood number.  

The equations defining the wall skin friction are 
0
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Thus from equations (54) and (55) we have,    0x f   and    0z g  .                        

The Nusselt number denoted by uN  is proportional to 
0y

T

y


 
 

 
, hence we have from 

(56),    0uN    

The Sherwood number denoted by hS  is proportional to 
0y

C

y


 
 

 
, hence we have from 

(57),    0hS    
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The skin friction coefficients, Nusselt number and Sherwood number are respectively 

obtained from the above equations and these values are sorted in Tables 1-3. 

Results and Discussion 

For the purpose of discussing the results some numerical calculations are carried out for 

non-dimensional primary   f   and secondary   g   velocities. The velocity profiles 

for the x  and z  components of velocity are shown in figures 2 – 13 for different values 

of , 0,   S ,   ,e i wf   ,   cR S  and .rP  The value of M is taken to be large which corresponds 

to a strong magnetic field. The value of 
rG  is taken to be large (

rG =10) since the value 

corresponds to a cooling problem that is encounter in nuclear engineering in connection 

with the cooling of reactors.  Negative values of rG  and mG ,  

which indicates the heating of the plate by free convection currents, are also taken into 

account. For Prandtl number rP  three values 0.71,  1.0 and 7.0are considered 0.71)  
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represents air at 020 ,  C  1.0,  1.0 , 1.0  corresponds to electrolytic solution such as salt 

water and 7.0  correspond to water) .The value of cS  is taken to be 0.22,  0.6 and 0.75  

which corresponds to Hydrogen, water vapor and Oxygen respectively. The values of 

rG , mG , ,,   So,  ,  e i R M  and wf  are however chosen arbitrarily with the above mentioned 

parameters, Figs. 2 and 3 represents the velocity profiles of primary velocity  f   and 

secondary velocity  g  for different values of e . It is found that for cooling plate, the 

primary velocity ( f  ) and secondary velocity (g) decrease with the increase of e .  
 

Figures 4 and 5 represents the velocity profiles of primary velocity  f   and secondary 

velocity  g  for different values of i . It is found that for cooling plate (positive values 

of rG  and mG ), both primary f   & secondary g  velocities decrease with the increase of 

i .  Fig. 6 represents the velocity profiles of primary velocity  f   for different values of 

0S . It is found that for cooling plate (positive values of rG  and mG ) f   increases up to the 

point 0 0.65   and   decreases from this point 0.65 3.6   with the increase of 0S .   

 

Figures 7 represents the velocity profiles of secondary velocity  g  for different values of 

0S .  It is seen that for cooling plate (positive values of rG  and mG ), g decreases with the 

increase of 0S .  Figs. 8 and 9 represent the velocity profiles of primary velocity  f   and 

secondary velocity  g  for different values of wf .   

 

Figures 8 and 9 depict that an increase in the suction parameter leads to a uniform 

decrease both primary and secondary velocities in case of cooling plate. The usual 

stabilizing effect of the suction parameter ( wf ) on the boundary layer growth is also 

evident from these figures.  Figures 10 and 11 represent the velocity profiles of primary 

velocity  f   and secondary velocity  g  for different values of R . It is found that for 

cooling plate (positive values of rG  and mG ), f   has a minor decreasing effect while g  

has a larger decreasing effect with the increase of R .  Figures 12 & 13 represent the 

velocity profiles of primary velocity  f   and secondary velocity (g) for different values 

of cS  in case of cooling plate. It is found that the primary  f   and secondary velocity (g) 

decrease with the increase of cS . It is found that for cooling of the plate (positive values 

of rG  and mG ), secondary velocity ( g ) decreases with the increase of cS but when cS   

0.75 (corresponding to Oxygen) the value of g  is more than the values for cS   0.22 and 

0.6. Figures 14 and 15 represent the velocity profiles of primary velocity  f   and 

secondary velocity  g  for different values of rP . It is found that for cooling plate, f   

and g  both decreases with the increase of rP  from 0.71 to 7.00.  In all the figures 

mentioned above, compared to the case of cooling of the plate, opposite effects is 

observed in case of heating of the plate. 
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Finally, in table 1-3 numerical values of the Skin frictions, Nusselt number and Sherwood 

number are tabulated. The effect of various parameters on the Skin frictions, Nusselt 

number and Sherwood number as observed from these tables are found to agree with the 

effects on the velocity profiles. 

Table 1: Numerical values proportional to ,z ,uN  and hS  for   0.6,e   0.1,i   

0.71,rP  0.6,cS  5M   and 0 1S 
 

rG  
mG  R  

wf  x  z  
uN  hS  

10 4 0.2 3 -371.746 0.694725 0.708865 0.55938 

10 4 0.3 3 -371.655 0.467339 0.708865 0.55938 

10 4 0.2 3.3 -306.832 0.60782 0.708968 0.524346 

-10 -4 0.2 3 371.7283 -0.85017 0.708865 0.55938 

-10 -4 0.3 3 371.8191 -0.57191 0.708865 0.55938 

-10 -4 0.2 3.3 306.2459 -0.66896 0.708968 0.524346 
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Table 2: Numerical values proportional to x , z , uN  and hS  for 0.2R  , wf =3, 

0.71rP  , 0.6cS  , 5M   and 
0 1S   

rG  
mG  e  

i  x  z  

10 4 0.3 0.1 -454.005 0.235659 

10 4 0.6 0.1 -371.746 0.694725 

10 4 0.6 0.3 -352.875 0.539235 

-10 -4 0.3 0.1 455.7263 -0.40061 

-10 -4 0.6 0.1 371.7283 -0.85017 

-10 -4 0.6 0.3 352.7218 -0.61357 
 

Table 3: Numeroical values proportional to x , z , uN  and hS  for e = 0.6, 0.1i  , 

0.2R  , wf =3, 5M   and 0 1S   

rG  
mG  rP  

cS  
x  

z  
uN  hS  

10 4 0.71 0.22 -254.77 25.17645 0.708865 0.230152 

10 4 0.71 0.60 -371.746 0.694725 0.708865 0.55938 

10 4 7 0.60 -138.719 2.438216 -21.2917 -3.20313 

-10 -4 0.71 0.22 254.7525 -25.3319 0.708865 0.230152 

-10 -4 0.71 0.60 371.7283 -0.85017 0.708865 0.55938 

-10 -4 7 0.60 138.7017 -2.59367 -21.2917 -3.20313 

Conclusions 

1. For cooling plate (positive values of rG  and mG ), f   increases up to the point 

0 0.65   and   decreases from this point 0.65 3.6   with the increase of 0S  

while secondary velocity g , decreases with the increase of the Soret number 0S . 

2. An increase in the suction parameter leads to a uniform decrease both primary 

and secondary velocities in case of cooling plate. The usual stabilizing effect of 

the suction parameter ( wf ) on the boundary layer growth is also evident from 

these figures. 

3. For cooling of the plate (positive values of rG  and mG ), secondary velocity ( g ) 

decreases with the increase of cS but when cS   0.75 (corresponding to Oxygen) 

the value of g  is more than the values for cS   0.22 and 0.6 

4. For cooling plate, f   and g  both decreases with the increase of rP  from 0.71 to 7.00 
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